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Phase diagram of Heisenberg fluids: Computer simulation and density functional theory

J. J. Weis
Laboratoire de Physique The´orique et Hautes Energies, Universite´ de Paris XI, Baˆtiment 211, F-91405 Orsay Cedex, France

M. J. P. Nijmeijer
Dipartimento de Fisica, Universita` degli Studi di Milano, via Celoria 16, 20133 Milano, Italy

J. M. Tavares and M. M. Telo da Gama
Departamento de Fı´sica da Faculdade de Cieˆncias and Centro de Fı´sica da Mate´ria Condensada, Universidade de Lisboa,

Avenida Professor Gama Pinto 2, P-1699 Lisboa Codex, Portugal
~Received 15 July 1996!

We have investigated equilibrium phases of a class of ferromagnetic Heisenberg fluids using computer
simulations and a modified mean-field approximation. In the latter, configurations in the average of the per-
turbative part of the energy are weighted by the zero-density approximation of the pair distribution function.
Although the theoretical results suggest a phase diagram with a tricritical point, the simulations provide some
evidence for a magnetic critical point. Owing to finite size effects, however, the existence of a tricritical point
cannot be ruled out.@S1063-651X~97!13901-0#

PACS number~s!: 61.20.Gy, 64.60.Cn, 64.60.Kw, 64.60.Fr
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I. INTRODUCTION

In a series of recent papers@1–3# we have investigated th
phase diagram of a model ferrofluid, whose particles inte
through two-body potentials consisting of a spherical ha
core and a Heisenberg-type interaction of their magnetic
ments:

f~r ,sW,sW8!5H `, r<s

I ~r !1J~r !sW•sW8, s,r<r c

0, r.r c ,

~1!

wheres is the hard-sphere diameter,r c is a cutoff radius
~assumed infinity in our earlier work!, and sW is a classical
spin vector of unit length. In three spatial dimensions, the
product in Eq.~1! may be written in terms of the anglea
betweensW and sW8, or in terms of their azimuthal and pola
angles, i.e.,sW•sW85cosa5cosu cosu81sinu sinu8cos(f2f8).
J(r ) and I (r ) are, respectively, the radial parts of the anis
tropic and~soft! isotropic interactions@4#.

Extensive mean-field~MF! calculations@5# have shown
that the topology of the phase diagram depends sensiti
on the relative strength of the isotropic and anisotropic in
actions. Three types of phase behavior may be obtained
pending on the ratio,R, of the integrated potentialsI (r ) and
J(r ),

R5Jint /I int . ~2!

The theory predicts, in addition to isotropic liquid an
vapor phases, a ferromagnetically ordered liquid pha
which is stable, at moderate to high densities. For wea
anisotropic potentials, the order-disorder transition is alw
continuous and terminates at a critical endpoint on~the liquid
side of! the liquid-vapor coexistence curve. Increasing t
anisotropy above a certain threshold drives the transi
551063-651X/97/55~1!/436~11!/$10.00
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first-order at low temperatures, thus leading to the appe
ance of a tricritical point and a ferromagnetic liquid-isotrop
liquid-vapor triple point. For strongly anisotropic potentia
ordinary liquid-vapor phase separation is preempted by a
rect ~condensation-ordering! transition between a low-
density disordered phase and a ferromagnetic liquid, wh
becomes continuous at a tricritical point.

A system withI (r )[0 ~or formally withR5`) has been
previously studied in@1# by computer simulations. In wha
follows, we denote this system by the Heisenberg fluid. T
liquid-vapor coexistence curve of the Heisenberg fluid w
determined@1# from MC simulations, using the Gibbs en
semble method~GEMC! @6#. These calculations, for a sys
tem with 216 particles, were aimed at studying the full co
pling, J(r ), i.e., r c5`. In a simulation, however, the
potential has to be truncated and thus a cutoff, equal to
the box length, was used; an estimate of the long-range c
tribution to the interaction energy was added to the simu
tion results. In the same work, the Curie line was loca
through canonical ensemble simulations, for a system w
500 particles. The average magnetization,m5^umW u&
5^u1/N( i51

N sW i u& (N number of spins! was recorded as a
function of temperature, at two densities,r*5rs350.3 and
0.7. The order-disorder transition temperature was estim
as the temperature wherem'0.5. It was concluded@1# that
the Curie line intersects the coexistence curve at a crit
endpoint, on the vapor side of the liquid-vapor coexisten
curve. This scenario implies that, at temperatures above
critical endpoint, the phase diagram exhibits coexistence
tween a magnetic vapor and a magnetic liquid. This tran
tion between two magnetic fluids ends, at a higher tempe
ture, at an order-order critical point. If confirmed, this critic
point is analogous to the solid-solid critical points inves
gated by Kincaidet al. @7# in studies of Ce and Cs, and b
Frenkel and co-workers in studies of model colloids@8#. The
simulation results for the Heisenberg fluid, however, app
436 © 1997 The American Physical Society



v
nd
h

th
o
-
d
of

-
a
-

e
a
e
le
x-

e
in
a

tu
th

em
o
h

a
ly

e
l
r
iz

M
ed

-
of
e
ed
in
tr
lt

co
al

ld

ro-

of
F
ate
be-
F
dia-
er-
r

se
ry
e
hose
e

ef-

ent
of
ia-
a
b-
i-
d in
ng

ing
nd

ame
the

ture
-
ent
ne

xes
er-
en-
ns

p-
nce
ges
of
s of

55 437PHASE DIAGRAM OF HEISENBERG FLUIDS: . . .
to be at variance with the results of MF theory@5#, which
does not predict this type of phase diagram for anypositive
value of the anisotropy ratio,R.

More recently@3#, we have investigated the phase beha
ior of the ferromagnetic Heisenberg fluid using both MF a
a more refined version of density-functional theory, viz., t
modified mean-field approximation~MMF!. In the latter,
configurations in the average of the perturbative part of
energy are weighted by the zero-density approximation
the pair distribution function. This is known to yield an im
proved description of the liquid-vapor phase diagram of
polar fluids @9#. Indeed, an overall improved description
the simulation results, for the system withR5`, is obtained
within MMF theory @3#. Nevertheless, the theory still pre
dicts that the phase diagram of this fluid exhibits a tricritic
point @3#, in ~apparent! contradiction with the simulation re
sults.

Clearly, small shifts in the simulated Curie line or th
liquid-vapor boundary yield a phase diagram exhibiting
tricritical point rather than a critical endpoint. In view of th
rough location of the Curie line, such shifts cannot be ru
out. In addition, it is not known how the liquid-vapor coe
istence curve may be affected, close to~multi!critical points,
by the rather small system size~216 particles!.

In a subsequent paper@2#, a more accurate location of th
Curie line was obtained, by resorting to finite size scal
theory@10,11#. Simulations were carried out in the canonic
ensemble at three densities,r*50.7, 0.6, and 0.4, for system
sizes ranging from 108 to 1372 particles~2916 particles for
r*50.6), at temperatures close to the transition tempera
of the infinite system. The latter was determined from
intersection of the fourth order cumulants,

u4512
^m4&
3^m2&2

, ~3!

plotted as a function of temperature, for the different syst
sizes@10#. To obtain an accurate value for the intersection
the fourth order cumulants, advantage was taken of the
togram reweighting technique@12#. In addition, critical slow-
ing down near the magnetic order-disorder transition w
avoided by adapting the Wolff cluster algorithm, original
devised for lattice systems@13#, to the continuum system
under study. The model studied in these simulations diff
from that of Ref. @1# by the truncation of the potentia
J(r ), at r c52.5s; this is less than half the simulation box fo
all the system sizes, as required in order to apply finite s
scaling arguments. Truncation ofJ(r ) affects quantitavely
the phase diagram of the Heisenberg fluid. Indeed, M
theory predicts that the tricritical temperature is lower
from Ttc*52.09 to Ttc*51.39, when the cutoff varies from
infinity to 2.5s @3#. The simulation of the liquid-vapor coex
istence curve of the Heisenberg fluid, with a cutoff
2.5s, is thus required. This is one of the goals of this pap
As was done previously, the GEMC technique is employ
An estimate of finite size effects is also obtained by us
systems with 512 and 1728 particles. In addition, an ex
point on the Curie line is located. These simulation resu
are described in Sec. II.

In earlier theoretical work, we have searched for the
existence of two orientationally ordered fluids for gener
-
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ized Heisenberg models and found it, within mean-fie
theory, for a class of models characterized bysoft repulsive
isotropic interactions, in addition to the hard-core and fer
magnetic Heisenberg potentials@3#. These calculations were
not confirmed by MMF theory and further investigation
this issue is the second goal of this paper. Although MM
theory is still approximate, it is expected to be more accur
than MF theory and thus the study of the global phase
havior of generalized Heisenberg fluid, based on MM
theory, may shed some light on the nature of the phase
gram of the simulated Heisenberg fluid. Indeed, if the ord
order critical point is found to occur within MMF theory fo
values of the interactions closer toR5` ~when compared
with the results of MF theory!, then it is possible that the
order-order critical point occurs in the Heisenberg fluid.

In this paper, we extend the calculations for the pha
diagrams of generalized Heisenberg fluids to MMF theo
and study the local stability of the tricritical point, for a wid
range of parameters. These results are compared with t
of MF theory. Unlike MF theory, where the topology of th
phase diagram depends only onR, MMF theory is sensitive
to the range of the interactions. We also investigate the
fects of this range on the phase diagram of the model.

This paper is organized as follows. In Sec. II we pres
the simulation results. In Sec. III we sketch a derivation
the MMF approximation and compare the new phase d
grams with those found within MF theory. We carry out
Landau expansion for the MMF free energy, in order to o
tain analytical conditions for the local stability of the tricrit
cal point. Some details of these calculations are presente
the Appendix. Finally, in Sec. IV we make some concludi
remarks.

II. SIMULATIONS

The liquid-vapor coexistence curve was determined us
the GEMC technique. The method is now fairly standard a
extensive descriptions are available in the literature@6#. Two
system sizes were considered, withN5512 and 1728 par-
ticles, respectively. In each case, theN particles are distrib-
uted over two boxes with volumesV1 andV2, which fluctu-
ate under the constraint of total fixed volume,V11V2. At
equilibrium, the pressure and chemical potential are the s
in the two boxes. Table I collects the characteristics and
thermodynamic data~expressed in reduced units! of the va-
por and liquid phases for the various runs, in the tempera
range T*5kT/J51.021.29. The simulations were per
formed in cycles: one cycle consists of a trial displacem
and rotation of the magnetic moment of every particle, o
attempt to change the volume andNex attempts to exchange
particles between the simulation boxes. As one of the bo
contains a ferromagnetic liquid, the efficiency of the ins
tion step was improved by the use of a bias: the spin ori
tation was chosen with a probability that favors orientatio
parallel to the local field, at the attempted~random! position
@1,14#. This bias is, of course, accounted for in the acce
tance probability of the particle transfer step. The accepta
ratios for the translation-rotation moves and volume chan
were adjusted to lie in the range 30–50 %, while the value
Nex was chosen to yield a success rate of particle transfer
1–3 %, depending on the temperature. The~residual! chemi-



438 55WEIS, NIJMEIJER, TAVARES, AND TELO da GAMA
TABLE I. Details of the GEMC simulations.

Vapor phase Liquid phase
kT/J N Ncycles rs3 m U/NkT p/kT m8/kT rs3 m U/NkT p/kT m8/kT

1.290 1728 400000 0.315~15! 0.44~2! 20.85~5! 20.318~3! 0.46~1! 0.76~1! 22.07~4! 20.314~3!

1.275 1728 154000 0.298~4! 0.41~2! 20.77~4! 20.346~4! 0.503~5! 0.797~5! 22.45~4! 20.342~6!

1.275 512 200000 0.288~5! 0.47~1! 20.70~4! ;0.41 20.363~4! 0.504~5! 0.817~5! 22.45~5! 20.363~4!

1.250 512 80000 0.271~4! 0.32~2! 20.59~4! 0.38~1! 20.440~5! 0.533~8! 0.81~1! 22.75~6! 0.40~2! 20.441~8!

1.200 1728 230000 0.226~2! 0.140~3! 20.368~4! 20.674~5! 0.568~2! 0.844~1! 23.21~2! 20.678~5!

1.200 512 130000 0.230~2! 0.22~1! 20.39~1! 0.329~5! 20.66~1! 0.583~4! 0.850~2! 23.34~3! 0.34~2! 20.65~1!

1.111 512 180000 0.181~2! 0.12~1! 20.29~1! 0.247~5! 21.060~15! 0.665~3! 0.886~1! 24.42~2! 0.21~2! 21.071~15!
1.000 512 200000 0.114~1! 0.048~2! 20.169~5! 0.137~2! 21.80~1! 0.744~1! 0.914~1! 25.84~1! ;0.02 21.79~1!
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cal potential,m8/kT5m/kT2 lnL3, was calculated during
the insertion step using Widom’s method, as generalized
Smit and Frenkel@15,16#.

The pressure was calculated from the virial expressio

p

kT
5^r&1

pHC
kT

1
1

6kT K 1V(
i , j
iÞ j

@2rW i j •¹W f i j #L , ~4!

wherepHC is the hard core contribution. The spin part~third
term on the right-hand side of 4! may be written as

S p

kTD
spin

52
4pra

2

18kTE dr r 3J8~r !hD~r !, ~5!

whereJ8(r ) is the derivative ofJ(r ), hD(r ) is the projection
of the pair distribution function on the spherical harmon
sW•sW8, andra is the density of phasea. We note that, owing
to the discontinuity of the potential atr5r c , a d-function
contribution arises that is significant in the ferromagne
phase only. It is given by

S p

kTD
c

5
4pra

2

18kT
r c
3J~r c!hD~r c!. ~6!

FIG. 1. Density distribution of the 1728 particle system
T*51.20.
y

c

Since, in order to save computer time, the pair distribut
function was not calculated in the course of the simulatio
we estimated the right-hand side of Eq.~6! by assuming that
hD(r ) takes its asymptotic value,hD(r )→3m2 (r→`), at
the cutoff distance,r5r c . The results of Table I show tha
using this correction~6!, the pressure of the liquid phase is
good agreement with that of the vapor, except at the low
temperature, since in this case the correlation function
not reached its asymptotic value atr5r c . The pressure of
the system with 1728 particles was not calculated.

At the lowest temperatures studied, the surface tensio
large and one of the boxes contains the vapor while the o
contains the liquid phase. The histograms for density a
magnetization exhibit two sharp peaks, corresponding to
two coexisting phases. An example is shown in Figs. 1 a
2, atT*51.20. In this case the densities and magnetizatio
as well as the other thermodynamic functions at coexisten
were obtained as an average of the corresponding quan
in each box. Error estimates were calculated through bl
averages. For each property~density, magnetization! care
was taken to choose the block size, larger than the de
‘‘time’’ of the corresponding autocorrelation function~see,
e.g.,@17#!.

When approaching the critical region the boxes were
served to switch identity nearT*.1.275, for the 512 particle
system and nearT*.1.29, for the larger~1728! system. In
this case the coexistence properties~densities, magnetiza

t FIG. 2. Magnetization distribution of the 1728 particle system
T*51.20.
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tions! were obtained from the positions of the maxima of t
corresponding histograms. However, density fluctuations
appreciable in the critical region, resulting in broad dens
distributions. This renders a precise location of the peak
sitions difficult. An example is shown in Fig. 3, a
T*51.29 ~1728 particles!. For this state, the boxes switche
identity three times, during 400 000 cycles~cf. Fig. 4, where
the density in one of the boxes is plotted as a function of
number of MC cycles — note the rapid passage from o
phase to the other!. The average densities, calculated wh
the system is in a well defined phase in each box, are 0.
0.328, 0.302 for the vapor phase and 0.464, 0.466, 0.447
the liquid phase. From these values, the average coexist
densities were found to be 0.3160.01 and 0.4660.01, com-
patible~within statistical errors! with those obtained from the
peak positions of the density distribution function.

Finite size effects can be estimated for the temperatu
T*51.275 andT*51.20, where two system sizes were co
sidered. They are expected to be appreciable in the cri
region only. In fact, no significant differences~within statis-
tical error! were found atT*51.275, when the system siz
increases from 512 to 1728 particles. At the lower tempe

FIG. 3. Density distribution of the 1728 particle system
T*51.29.

FIG. 4. Instantaneous density versus number of MC cycles
the 1728 particle system atT*51.29.
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tureT*51.20, however, we found a difference in the liqu
coexistence densities, of 0.15, which is outside the combi
error bars. Inspection of the density of the box containing
liquid phase~cf. Fig. 5! indicates that in this system th
average density may not have converged after 200
cycles.

Results for the liquid-vapor coexistence curve and the C
rie line are shown in Fig. 6 and in more detail in Fig. 7. T
Curie line is obtained from canonical MC calculations of t
order-disorder transition temperatures at four densit
r*50.7, 0.6, 0.4, and 0.31. The corresponding critical te
peratures ~for the infinite system! are T*53.79
60.01,3.15060.005,1.94060.005, and 1.44260.005, re-
spectively. These were determined from the intersect
points of the fourth order cumulants,u4 @cf. Eq. ~3!# plotted
versus temperature, for different system sizes@10#. For the

t

f

FIG. 5. Instantaneous density versus number of MC cycles
the 1728 particle system atT*51.20.

FIG. 6. Phase diagram of the ferromagnetic Heisenberg fl
The open squares represent MC calculations of the Curie line.
filled squares~500 spins! and open circles~1728 spins! represent
Gibbs ensemble MC data of the liquid-vapor coexistence curve.
solid lines are the modified mean field results from@3#. The dotted
lines are fits to the MC data@a straight line for the Curie line, Eq
~7!, with b51/2 and the law of rectilinear diameters for the liqui
vapor coexistence curve#. They serve merely as a guide to the ey
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three highest densities, the system size ranged from 10
2916, while for the lowest density, three system sizes~108,
256, and 500 particles! were considered. The points for th
three highest densities are from Ref.@2#, where details of the
calculations may be found. The point forr*50.31 is new.
Over the temperature range considered in the simulati
the Curie line appears to be linear~within the uncertainty of
the results!.

We now address the question of whether the pres
simulation results allow us to discriminate between the s
ations described in the Introduction, namely, the Curie l
ending at~i! a critical endpoint on the vapor side of th
condensation phase boundary, as suggested by the
simulations, or~ii ! a tricritical point, as suggested by th
theory. In the vicinity of the critical~or tricritical! tempera-
ture, the density difference between the liquid and va
phases~order parameter! ~of a macroscopic system! vanishes
with temperature, as

r l 2rv}uT2Tcub, ~7!

whereTc is the critical~tricritical! temperature of the infinite
system andb the bulk critical exponent. Equation~7! is valid
only in the close neighborhood of the critical temperatu
For a finite system, Mon and Binder@18# have shown that
Eq. ~7! has to be replaced by

r l 2rv}uT2Tc~L !ub, ~8!

if the correlation lengthj is less than the system sizeL, and
that the behavior of the system crosses over to

r l 2rv}uT2Tc~L !ubeff, ~9!

when the correlation lengthj exceeds the linear dimensio
L of the simulation box.Tc(L) is a size dependent critica
temperature and the effective critical exponent,beff , is given
by its classical~mean-field! value,bcl . For sufficiently large
systems, where the regimej!L is established, the system
will cross over from the behavior given by Eq.~8! to that
described by Eq.~9!, as the temperature approachesTc(L).
In three-dimensional systems, however, this crossover
be difficult to observe.

FIG. 7. Same as Fig. 6~detail!.
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If the three-dimensional Heisenberg model studied in t
paper exhibits a tricritical point, the exponents take th
classical, mean-field, values, sinced53 is the upper critical
dimension for tricritical behavior@19#. These exponents de
pend on the path along which the tricritical point is a
proached as well as on the nature of the corresponding o
parameter@19#. The number density,r, is a nonordering den-
sity and in this work the tricritical point is approached alo
the triple line, so that the corresponding critical exponen
b5beff51 @19#.

It is readily seen, however, that Eq.~9!, with beff51, does
not yield a good representation of the simulation data,
particular, satisfying the requirement that the tricritical po
is on the Curie line. We cannot rule out, however, that E
~9! applies only in a very narrow range of temperatures, n
Tc . As remarked earlier, this region cannot be approach
reliably, by GEMC simulations. Another problem aris
from the fact that the temperatures on the Curie line w
calculated for an infinite system, while those of the fir
order phase boundary correspond to finite system sizes.
though the difference betweenTc(L) andTc(`) is expected
to be small, it may be relevant in this context.

The simulations appear to be compatible with an alter
tive scenario, as suggested by@1#, i.e., the system exhibits a
order-order~magnetic! critical point. In fact, a reasonable fi
of Eq. ~9! to the MC data, over the temperature range 1.
1.29, is obtained, withbeff'1/2. This is the mean field value
of the coexistence curve exponent, for an ordinary criti
point. In this case, the Curie line terminates on the coex
ence curve, at a temperature close toT*51.27, and there is
a small temperature region betweenT*51.27 and the order-
order critical point, where the coexisting phases are a m
netized vapor and a magnetized liquid. With this picture
mind we have analyzed the variation of the magnetizat
along the coexistence curve. Along the liquid branch of
coexistence curve, the magnetization is well defined, vary
from 0.91 at the lowest temperature to 0.76 atT*51.29 ~cf.
Table I!. On the vapor side, the magnetization is very sm
at temperaturesT*,1.25, then increases to 0.32
T*51.25, 0.41 atT*51.275, and 0.44 atT*51.29 ~1728
particles!. Fluctuations of the magnetization are important,
evidenced from the broad shape of the magnetization hi
gram ~cf. Fig. 8!. For T*>1.25, the coexisting vapor dens
ties are close to the Curie line and finite size effects may p
an important role. A more detailed study of the finite si
effects is required before a definite conclusion is reached
to the value of the infinite system magnetization, in this
gion. In particular, the expected nonclassical exponent
the three-dimensional Heisenberg fluid should be observ
before the crossover to the classical regime is obtained.

III. THEORY

A. Modified mean-field phase diagrams

Let us consider the generalized Heisenberg fluid of E
~1!. Within density functional theory this system is chara
terized by the density orientational profiler(rW,v)
[r(rW) f̂ (rW,v), r(rW) being the density of particles at positio
rW and f̂ (rW,v) the fraction of those particles with orientatio
v[(u,f). If the intermolecular potentialf is pairwise ad-
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ditive and separable into a reference part (f ref) and a pertur-
bation (fp), then @20# the free energy functional may b
written as

F @r~rW,v!#5Fref@r~rW,v!#1
1

2E0
1

daE drW1drW2dv1dv2

3g~rW1 ,v1 ,rW2 ,v2 ;a!r~rW1 ,v1!

3fp~rW1 ,v1 ,rW2 ,v2!r~rW2 ,v2!, ~10!

whereg(rW1 ,v1 ,rW2 ,v2 ;a) is the pair correlation function o
a system with interaction potential

fa~rW1 ,rW2 ,v1 ,v2!5f ref1afp . ~11!

Equation~10! is exact but, in general, approximations a
required in order to apply it to interacting systems.

We consider generalized Heisenberg fluids character
by the potential of Eq.~1!, and take forJ(r ) the Yukawa
form used in earlier work and forI (r ) the tail of the
Lennard-Jones potential,

J~r !52eJ
exp@2l~r /s21!#

r /s
, ~12!

I ~r !52e I S s

r D
6

. ~13!

The ratioR defined by Eq.~2! is now

R5

E
s

r c
r 2drJ~r !

E
s

r c
r 2drI ~r !

5
3eJ
e I

F ~11l!2~11lr c /s!exp@2l~r c /s21!#

12~r c /s!23 G .
~14!

FIG. 8. Magnetization distribution of the 1728 particle system
T*51.29.
d

We considereJ greater than or equal to zero~ferromagnetic
interactions only!; R takes the sign ofe I , which is positive
for isotropic attractive interactions, and negative otherwis

The reference part of Eq.~10! is treated as in@3#, i.e., by
using a local density approximation for the reference f
energy functional and a random mixing approximation
the orientational entropy of a uniform, orientationally o
dered fluid. The Carnahan-Starling free energy is used for
uniform hard sphere free energy density. The pair correla
function is approximated by a zero density approximat
@21#,

g~rW12,v1 ,v2 ;a!5exp„2bfa~rW12,v1 ,v2!…. ~15!

Substitution of Eq.~15! into Eq. ~10! yields the MMF free
energy density of a uniform fluid:

b f ~r,$h l%,T!5b f hc2
1

2
r2u01

1

2
r2(

l51

`

ulh l
21r lnS 2CD ,

~16!

where the coefficientsul are found by integrating the pertur
bative part of Eq.~10!,

ul54p
2l11

2 E
s

r c
r 2dr

3Fexp„2bI ~r !…I l11/2~ t !A2p

t
22d l ,0G . ~17!

Here I k is a modified Bessel function of orderk,
t5ubJ(r )u and the set$h l% denotes the coefficients of th
expansion off̂ (v), in Legendre polynomials:

f̂ ~v!5(
l50

`
2l11

4p
h lPl~cosu!. ~18!

C is a normalization constant given by

C5E
21

1

expS r(
k51

`

hkukPk~x!D dx. ~19!

Minimization of Eq. ~16!, with respect to the order param
etersh l , yields their equilibrium values, which are the sol
tion of the set of integral equations:

h l5

E
21

1

Pl~x!exp„r(k50
` hkukPk~x!…

C
. ~20!

We note thath1 is just the earlier defined magnetizationm.
Using Eq. ~16!, we find for the pressure (p) and the

chemical potential (m)

bp5bphc2
1

2
r2(

l50

`

h l
2ul , ~21!

bm5bmhc2ru01 lnS 2CD . ~22!

t
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At two-phase coexistence, the equilibrium densities are
solutions of

p~r l ,T!5p~rv ,T!,

m~r l ,T!5m~rv ,T!, ~23!

and the phase diagrams are calculated by solving Eqs.~23!
and~20!. For practical reasons, the sums overl are truncated
at l56 ~see@3# for a discussion!.

A systematic investigation of the MMF phase diagram
as a function ofR, was carried out. The existence of ma
netic critical points, within the MMF approximation, has r
ceived particular attention, since it is significant in the co
text of the simulations described earlier. In Figs. 9–11
plot the results for the MMF phase diagrams of three s
tems, with ‘‘infinite’’ r c ~in practice we tookr c510s) illus-
trating the different types of diagrams found, for positi
R. A description of the phase transitions and critical points
each of these diagrams was discussed, in detail, in Sec. I
@3#, so we just summarize it here. Three types of transiti
were identified: a continuous order-disorder transition
tween ferromagnetic and isotropic dense fluids~Curie line!,
and two first-order condensation transitions. The tempera
at which the Curie line meets the condensation phase bo
ary depends sensitively onR.

For weakly anisotropic fluids, the Curie line ends at
critical endpoint, CEP, on the condensation phase bound
The corresponding temperature,TCEP, separates a regime o
isotropic liquid-vapor condensation from a regime
condensation-ordering transitions~Fig. 9, type I diagram!.
For stronger magnetic anisotropies, the critical end point
comes locally unstable and a tricritical point occurs at a te
peratureTtc , where the Curie line terminates. The tricritic
temperature increases with the anisotropyR, and this point
separates two regimes of magnetic transitions. AboveTtc the
magnetic transition is continuous~Curie line!, while below,
it is first order. This diagram also exhibits a triple point tem
peratureTtr , where a vapor, an isotropic liquid, and a ma

FIG. 9. Phase diagram of the Heisenberg fluid withR50.3, in
the MMF approximation~type I!. Tc

iso, temperature of the isotropic
critical point; FL, ferromagnetic liquid; IL, isotropic liquid; IV,
isotropic vapor; full lines, first order phase transitions; dashed l
Curie line;ci , isotropic critical point; CEP, critical end point.
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netic liquid coexist~Fig. 10, type II diagram!. As R in-
creases, the triple point temperature also increases, un
becomes equal to the isotropic liquid-vapor critical point.
higher anisotropies, the isotropic critical point occurs a
temperature belowTtr and thus it is no longer globally stabl
~Fig. 11, type III diagram!. This type of diagram persists u
to R5`, i.e., for systems with no isotropic attractive inte
actions.

The tricritical point becomes locally unstable, at a neg
tive value ofR. At this point the system crosses over fro
tricritical behavior to a regime where an order-order critic
point occurs~Fig. 12, type IV diagram!. In these systems, th
Curie line ends at a critical endpoint on the low dens
branch of the first-order phase diagram and, at temperat
between the critical endpoint and the magnetic critical po
phase coexistence occurs between two magnetic fluids.

Comparison of these results with those of Ref.@3# shows
that forR50.3 andR50.5 we obtain the same type of pha
diagrams within MF and MMF approximations. By contra
for R50.7 we obtain a phase diagram of type III within M

FIG. 11. Phase diagram of the Heisenberg fluid withR51 in the
MMF approximation~type III!.

,

FIG. 10. Phase diagram of the Heisenberg fluid withR50.5 in
the MMF approximation~type II!. tc, tricritical point.
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theory while it is of type II using MMF~see the following
subsection!. This is an indication that MF theory overest
mates the stability of the ordered phases~with respect to
MMF theory! which results from neglecting correlations.

B. Stability of the tricritical point

A systematic comparison between MF and MMF appro
mations was carried out by calculating the values ofR,
where the type of phase diagram changes. These were c
lated previously, within MF theory, by Hemmer and Imb
@5# who found,RI-II50.38 andRII-III 50.63, and more re-
cently by @3#, who foundRIII-IV 5225.2.

In order to calculateRI-II we require an equation for th
tricritical point, since the transition from type I to type II i
obtained, whenTtc equalsTCEP ~see the preceding subse
tion!. Likewise, the transition from type II to type III occur
when the triple point temperature equals the isotropic crit
point and it is found by solvingTc

iso(R)5Ttr(R). Finally, a
phase diagram changes from type III to type IV when
tricritical point becomes locally unstable, i.e., when a ‘‘te
racritical’’ point appears@3#.

Analytical expressions for the multicritical points referre
to above were calculated using the MF free energy@3# by
various methods. Here, we apply one of these to the M
free energy. Briefly, the method consists in~i! calculating the
MMF stability matrix, M , using Eq.~16!; ~ii ! solving the
stability equation, detM50, in order to determine the critica
points and the corresponding eigenvectors;~iii ! expanding
the free-energy in powers of a scalar parameterd, about the
critical point, along a direction parallel to a correspondi
eigenvector. Details of these calculations are given in
next few lines and in the Appendix.

The elements of the stability matrix,M , are

Mi j5
]2b f

]r i]r j
, ~24!

where r05r and $r i%5$h i% for iÞ0. Local stability re-
quires that the stability matrix is positive definite, i.e., th
detM.0 @22#. This condition is first violated when

FIG. 12. Phase diagram of the Heisenberg fluid withR523 in
the MMF approximation~type IV!. cOO, order-order critical point
~OOCP!. Tc , temperature of the OOCP.
-

cu-

l

e

F

e

t

detM50. At continuous phase transitions, detM vanishes on
the phase boundary, i.e., at the critical point. There are
such solutions with$h l50%( lÞ0), corresponding to the iso
tropic critical point and to the Curie line. The latter is give
by ~see@3# and the Appendix!

ru153, ~25!

and the corresponding eigenvector is

v5~0,1,0 . . . !. ~26!

Similarly, the condition for the tricritical point is obtained b
expanding the free energy about one point on the Curie l
in the direction ofv. We first consider variations~see also
@23#! in r andh i , about a point on the Curie line, of the typ

~r,h1 ,h2 ,h3 , . . . !5~rCurie,0,0, . . .!1~0,1,0, . . .!d

1~x0 ,x1 ,x2 , . . . !d
2, ~27!

where (x1 ,x2 , . . . ) defines a line in density space which i
as yet, arbitrary. The corresponding variation inf is

b f ~r,$h i%!5b fCurie1D~x0 ,x1 ,x2 , . . . !d
41O~d5!,

~28!

whereD is given by

D~x0 ,x1 , . . . !5
1

2 S ]2b fHC
]r2

2u0D x022 3

2
x0

1
1

2
r2(

k52

` S 12
ruk
2k11Dukxk2

2
3

5
r2x2u21

9

20
r. ~29!

A tricritical point is obtained whenD vanishes@3#. By mini-
mizing D with respect to thexi we find for xi

min

x0
min5

3

2S ]2fHC
]r2

2u0D , ~30!

x2
min5

3

5S 12
ru2
5 D , ~31!

with xi
min50 for i.2 and x1

min arbitrary. A zero ofDmin

signals the onset of a local instability of the Curie critic
point and yields the condition for tricriticality, i.e.,

r
]2b fHC

]r2
5
5

2S 3u225u1
9u225u1

D13
u0
u1

~32!

is the equation for the tricritical points. This equation is t
same as Eq.~7.24! of @24#, which was obtained for dipola
fluids using MMF theory, and it is thus the general conditi
for tricriticality within the MMF approximation.
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The condition for the local stability of the tricritical poin
may be obtained by writing a similar expansion forf , about
a point on the tricritical line. This is done by considerin
variations of the type

~r,h1 ,h2 , . . . !5~r tc,0,0, . . .!1~0,1,0, . . .!d

1~x0
min,x1 ,x2

min, . . . !d2, ~33!

which yields the expansion forf ,

b f ~r,$h i%!5 f tc1E~x0
min,x2

min, . . . !d61O~d7!. ~34!

The vanishing of the fifth order term ind requires that
x150 and thusE depends only onx0

min and x2
min . The tri-

critical point becomes locally unstable whenE50. In @3#
this was referred to as a ‘‘tetracritical’’ point and it is th
solution of

1

6

]3b fHC
]r3

~x0
min!31

1

2
~x2

min!2x0
minru2S 22

3

5
ru2D

2
1

7315
~x2

min!3r4u2
32

3~x0
min!2

r
2

~x2
min!2r5u1

2u2
2

7315

2
4

15
x0
minx2

minr3u1
2u21

9

4
x0
min1

2

21315
x2
minr6u1

4u2

2
9

35
r50. ~35!

RIII-IV is now obtained by solving simultaneously Eqs.~25!,
~32!, and~35!. These results were used to calculate the v
ues of the anisotropy ratio where the phase diagrams cha
within MMF theory.

FIG. 13. MMF tricritical scaling region for the simulate
Heisenberg fluid (R5` andr c52.5s). Log10m on the coexistence
line vs log10(12T/Ttc). The scales were chosen so that, as
tricritical temperature is approached, the curve approache
straight line parallel to the main diagonal, corresponding
b50.5. This behavior is illustrated in the inset. The slope cal
lated from the two points closest to the tricritical temperature yie
b50.456.
l-
ge,

We have obtainedRI-II for different values ofr c ~ranging
from 2.5 to 10, forl51) and found thatRI-II decreases
slightly as r c decreases~see Table II!. Likewise we have
calculatedRII-III for the same range ofr c , with l51, and
found thatRII-III decreases weakly withr c ~see Table II!.
Finally, the value ofRIII-IV was calculated as a function o
r c , for l51. We found thatRIII-IV is always negative and
that its absolute value decreases strongly withr c . For values
of r c,2.65s, a tetracritical point has not been found. Th
suggests that there is a threshold for the range of the in
actions below which the type of condensation associa
with the order-order critical point does not occur.

In addition, we have searched for a pair of valu
(r c ,l) corresponding to a tetracritical point withR5`. This
is relevant in the context of the simulations discussed pre
ously. As noted before, forl51 we did not find a tetracriti-
cal point for any value ofr c when R5`. For values of
l50.01, 0.1, 0.5, 2, 3, andr c in the range 2,r c,10, we
have also failed to find a tetracritical point for the Heisenbe
fluid. This suggests that the tetracritical point and thus
possibility of an order-order critical point is associated w
the change in sign ofe I , i.e., with the inclusion of additiona
repulsions, at least within the MF and MMF approximation

e
a

-
s

FIG. 14. MMF tricritical scaling region for the simulate
Heisenberg fluid (R5` and r c52.5s). Dashed line, log10(r l /r tc

21); dotted line, log10(12rv/r tc). The dashed line was shifted b
a constant for clarity. The scales were chosen so that on appro
ing the tricritical temperature the two curves approach a stra
line parallel to the main diagonal, sinceb l5bv51. This is shown
in the inset. The slopes calculated from the two points closest to
tricritical temperature areb l50.994 andbv51.019.

TABLE II. Dependence ofR on the cutoff,r c ~in units of s).
For cutoffs,r c,2.65, the system of equations~25!, ~32!, and ~35!
has no solution, and thus the OOCP does not occ
RIII-IV 522.99 whenr c52.65.

r c RI-II RII-III RIII-IV

10 0.43 0.71 27.82
6 0.43 0.71 27.63
4 0.42 0.69 26.72
2.5 0.38 0.64
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IV. CONCLUSIONS

The results of MMF are expected to be closer to the ex
results than those of MF theory. MMF is obtained from
‘‘zero-density’’ limit of the pair correlation function and thu
it must be reasonably accurate at low densities. At hig
densities, we base our assumption on the fact that,
R5`, the MMF results are indeed closer to the simulati
results~see@3#!.

We have found that, at least for positiveR, MF overesti-
mates the anisotropic interactions~correlations!, when com-
pared with MMF. This is what we may have anticipat
since MF theory is known to overestimate the stability of t
ordered phases. In fact, a comparison of the values ofRI-II
and RII-III shows that more anisotropic interactions are
quired within MMF ~largerR) to cross over from the wea
to the strong magnetic regimes, in line with the above d
cussion. This is corroborated by the fact that for the sa
value ofR, the ordered phase is more stable within the M
approximation.

The question still remains of whether an order-order cr
cal point occurs for a system withR5`, within an ‘‘exact’’
calculation. If this is the case, we would expect the MM
RIII-IV to be closer to infinity than the corresponding M
result. Or, in other words, we would expect that less isotro
repulsions are required in MMF than in MF theory. How
ever, this is not what happens. In fact,RIII-IV

MMF527.8 ~for
r c510) while RIII-IV

MF 5225.2. Inspection of Table II also
shows that this trend is even more pronounced for low
values ofr c , i.e., uRIII-IV u within MMF is smaller for any
other value ofr c . We cannot rule out that the MMF resul
are less accurate than those of MF theory, but at presen
do not see why this should occur.

By contrast, the simulations reported in Sec. II do n
provide conclusive evidence for either the tricritical or t
order-order critical point scenario. We have calculated
size of the tricritical scaling region of the Heisenberg flu
within the MMF approximation and the results are summ
rized in Figs. 13 and 14. We note thatrv has a wider scaling
region than eitherr l or m. These results suggest that th
simulation points may be outside the scaling region, exc
perhaps for points on the vapor branch. However, in orde
settle this issue we need an accurate estimate ofTc(L). In the
absence of this information we can only suggest that this
problem.

More accurate theoretical results are unlikely to be
tained with current techniques, and thus the type of critica
of the Heisenberg fluid must be settled by further simu
tions. A possibility is the use of an approach similar to th
adopted by Wilding and Nielaba@25# to investigate the tric-
ritical point of a two-dimensional Ising spin fluid. These a
thors locate the tricritical point using the cumulant inters
tion method. The fourth order cumulants of th
magnetization corresponding to various system sizes, in
sect at a point which is the tricritical temperature. The p
sibility to apply a similar approach to the present thre
dimensional Heisenberg fluid is under investigation.
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APPENDIX

In order to determine the Curie line Eq.~25! and the
direction v over whichb f is expanded, we calculated th
elements of the stability matrixM , with H50 andh l50
( lÞ0), and found

]2b f

]r2
5

]b fHC
]r2

2u0 , ~A1!

]2b f

]r]hk
50, ~A2!

]2b f

]hk]h j
5r2uk~d j ,k2ruj^PkPj&!, ~A3!

where ^A(x)&5(1/C)*21
1 A(x)exp„(k51

`rhkukPk(x)…,
with C given by Eq. ~19!. detM50 has several types
of solutions. A zero of Eq.~A1! corresponds to the iso
tropic critical point. Note that of the terms]2b f /]hk

2 that
which vanishes at the lowest density corresponds
k51 @ul(T).ul11(T) for l>1#, and thus the Curie line is
given by ru153. This line separates the (r,T) plane into
two regions corresponding to ordered and disordered pha
The eigenvector associated with this zero eigenvalue ofM is
given by Eq.~26!.

The expansion ofb f along a line given by Eqs.~27! or
~33! can be written as

b f ~rC1x0d
2,d1x1d

2,x2d
2, . . . !5 (

m50

`
dm

m!
Qm@b f #,

~A4!

whererC is the density of the Curie critical point, Eq.~28!,
or of the tricricritical point, Eq.~34!, respectively.Qm is the
mth power of the differential operatorQ,

Q5d(
i50

` S xi1 ]

]h i
D1

]

]h1
. ~A5!

This expansion involves derivatives ofb f with respect to
r and each of theh l . The derivatives are evaluated
h l50 (lÞ0). It is easily seen, after carrying out some
them, that they involve terms of the type

^Pl~x!Pk~x!•••Pn~x!&. ~A6!
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Using the recursion relation for the Legendre polynomial
is possible to convert the terms in Eq.~A6! in a sum of terms
^P1(x)Pi(x)&, given by

^P1~x!Pi~x!&5
i11

2i11
^Pi11~x!&1

i

2i11
^Pi21~x!&.

~A7!

It is easily seen that in the absence of a magnetic field,

^Pk~x!&5hk ~kÞ0!, ~A8!

and so the terms in the expansion~A4! are greatly reduced
The coefficient ofd3 in Eq. ~A4! vanishes identically ove

the Curie line. The nonzero derivatives that appear in
d4 term are given by Eqs.~A1!, ~A3!, and

]3b f

]h2]h1
2 52

2

15
r4u1

2u2 , ~A9!

]3b f

]r]h1
2 5ru1~22ru1!, ~A10!

]4b f

]h1
4 5

2

15
r5u1

4 . ~A11!

The nonzero derivatives of the fifth order term are E
~A9! and

]3b f

]h1]h2]h3
5

3

35
r4u1u2u3 , ~A12!
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]3b f

]r]hk
2 52ruk2

3r2uk
2k11

, ~A13!

]3b f

]h1
3]h3

52
2

35
r5u1

3u3 . ~A14!

Finally, the nonzero derivatives in the coefficient ofd6

are Eqs.~A9!, ~A10!, and

]3b f

]r3
5

]3b fHC
]r3

, ~A15!

]4b f

]h1
2]h2

2 52
11

105
r5u1

2u2
2 , ~A16!

]4b f

]r]h1
2]h2

52
8

15
r3u1

2u2 , ~A17!

]4b f

]r2]h1
2 52u1~12ru1!, ~A18!

]5b f

]r]h1
4 5

2

3
r4u1

4 , ~A19!

]5b f

]h1
4]h2

5
12

175
r6u1

4u2 , ~A20!

]6b f

]h1
6 52

16

63
r7u1

6 . ~A21!
d.

s.

l

i-
@1# E. Lomba, J.J. Weis, N.G. Almarza, F. Bresme, and G. S
Phys. Rev. E49, 5169~1994!.

@2# M.J.P. Nijmeijer and J.J. Weis, Phys. Rev. Lett.75, 2887
~1995!; Phys. Rev. E53, 591 ~1996!.

@3# J.M. Tavares, M.M. Telo da Gama, P.I.C. Teixeira, J.J. We
and M.J.P. Nijmeijer, Phys. Rev. E52, 1915~1995!.

@4# Although the magnetic interactions considered in this work
invariant under rotations both in the position and spin spa
we call them anisotropic to be consistent with@3# and with the
literature on liquid crystals.

@5# P.C. Hemmer and D. Imbro, Phys. Rev. A16, 380 ~1977!.
@6# A.Z. Panagiotopoulos, Molec. Sim.9, 1 ~1992!; B. Smit, in

Computer Simulation in Chemical Physics, edited by M.P.
Allen and D.J. Tildesley~Kluwer, Dordrecht, 1993!.

@7# J.M. Kincaid, G. Stell, and E. Goldmark, J. Chem. Phys.65,
2172 ~1976!; J.M. Kincaid and G. Stell,ibid. 67, 420 ~1977!.

@8# P. Bolhuis and D. Frenkel, Phys. Rev. Lett.72, 2211~1994!; P.
Bolhuis, M. Hagen, and D. Frenkel, Phys. Rev. E50, 4880
~1994!.

@9# P. Frodl and S. Dietrich, Phys. Rev. A45, 7330~1992!.
@10# K. Binder, Z. Phys. B43, 119 ~1981!.
@11# M.N. Barber, inPhase Transitions and Critical Phenomen,

edited by C. Domb and J.L. Lebowitz~Academic Press, Lon-
don, 1983!, Vol. 8; Finite Size Scaling and Numerical Simula
tion of Statistical Systems, edited by V. Privman~World Sci-
entific, Singapore, 1990!.
l,

,

e
,

@12# A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.63,
1195~1989!; R.H. Swendsen, Physica A194, 53 ~1993!, R.H.
Swendsen. J.S. Wang, and A.M. Ferrenberg, inThe Monte
Carlo Method in Condensed Matter Physics, edited by K.
Binder, Springer Topics in Applied Physics Vol. 71, 2nd e
~Springer, Berlin, 1995!.

@13# U. Wolff, Phys. Rev. Lett.62, 361 ~1989!.
@14# J.M. Caillol, J. Chem. Phys.98, 9835~1993!.
@15# B. Widom, J. Chem. Phys.39, 2808~1963!.
@16# B. Smit and D. Frenkel, Mol. Phys.68, 951 ~1989!.
@17# G.L. Deitrick, L.E. Scriven, and H.T. Davis, J. Chem. Phy

90, 2370~1989!.
@18# K.K. Mon and K. Binder, J. Chem. Phys.96, 6989~1992!.
@19# I.D. Lawrie and S. Sarbach, inPhase Transitions and Critica

Phenomena, edited by C. Domb and J.L. Lebowitz~Academic
Press, London, 1984!, Vol. 9.

@20# R. Evans, Adv. Phys.28, 143 ~1979!.
@21# J.-P. Hansen and I.R. McDonald,Theory of Simple Liquids

~Academic, London, 1986!.
@22# We note that detM.0 is only a necessary condition for pos

tive definiteness, sinceM is positive definite iff all principal
determinants are positive.

@23# S. Krinsky and D. Mukamel, Phys. Rev. B11, 399 ~1975!.
@24# B. Groh and S. Dietrich, Phys. Rev. E50, 3814~1994!.
@25# N.B. Wilding and P. Nielaba, Phys. Rev. E53, 926 ~1996!.


