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Phase diagram of Heisenberg fluids: Computer simulation and density functional theory
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We have investigated equilibrium phases of a class of ferromagnetic Heisenberg fluids using computer
simulations and a modified mean-field approximation. In the latter, configurations in the average of the per-
turbative part of the energy are weighted by the zero-density approximation of the pair distribution function.
Although the theoretical results suggest a phase diagram with a tricritical point, the simulations provide some
evidence for a magnetic critical point. Owing to finite size effects, however, the existence of a tricritical point
cannot be ruled oufS1063-651%97)13901-(

PACS numbsgs): 61.20.Gy, 64.60.Cn, 64.60.Kw, 64.60.Fr

[. INTRODUCTION first-order at low temperatures, thus leading to the appear-
ance of a tricritical point and a ferromagnetic liquid-isotropic
Cl{'quid—vapor triple point. For strongly anisotropic potentials,

phase diagram of a model ferrofluid, whose patrticles interact™". o T .
through two-body potentials consisting of a spherical hargOrdinary liquid-vapor phase separation is preempted by a di-
core and a Heisenberg-type interaction of their magnetic mo"€Ct (condensation-ordering transition between a low-

density disordered phase and a ferromagnetic liquid, which

In a series of recent papdrk-3] we have investigated the

ments:
becomes continuous at a tricritical point.
©, r<c A system withl (r)=0 (or formally with R=«) has been
- - previously studied iff1] by computer simulations. In what
#(r,s,8")=1 I(r)+I(r)s-s’, o<r=r, (D follows, we denote this system by the Heisenberg fluid. The
0, r>rg, liquid-vapor coexistence curve of the Heisenberg fluid was

determined[1] from MC simulations, using the Gibbs en-
where o is the hard-sphere diametert, is a cutoff radius semble methodGEMC) [6]. These calculations, for a sys-
(assumed infinity in our earlier workands is a classical ~tem with 216 particles, were aimed at studying the full cou-
spin vector of unit length. In three spatial dimensions, the dopling, J(r), i.e.,, rc=c. In a simulation, however, the
product in Eqg.(1) may be written in terms of the angle  potential has to be truncated and thus a cutoff, equal to half
betweens ands’, or in terms of their azimuthal and polar the boxlength, was used; an estimate of the long-range con-
tribution to the interaction energy was added to the simula-

J(r) andI(r) are, respectively, the radial parts of the aniso';ﬁguresuclt:ﬁolgiégfeiag,rgr?]g;lgr;’n:ﬂ; ti((:)lrjmge fgrr'ea V;a:té?:a:,tveit?]
tropic and(soft) isotropic interaction$4]. 9 ' Yy

Extensive mean-fieldMF) calculations[5] have shown S00 particles. The average magnetizatiom=(|m|)
that the topology of the phase diagram depends sensitively (|1/N=] ;s;|) (N number of spinswas recorded as a
on the relative strength of the isotropic and anisotropic interfunction of temperature, at two densitieg,= po=0.3 and
actions. Three types of phase behavior may be obtained dé-7. The order-disorder transition temperature was estimated
pending on the ratidR, of the integrated potentialgr) and  as the temperature whene~0.5. It was concludedl] that
J(r), the Curie line intersects the coexistence curve at a critical
endpoint, on the vapor side of the liquid-vapor coexistence
R=Jint/lint - (2)  curve. This scenario implies that, at temperatures above the
critical endpoint, the phase diagram exhibits coexistence be-
The theory predicts, in addition to isotropic liquid and tween a magnetic vapor and a magnetic liquid. This transi-
vapor phases, a ferromagnetically ordered liquid phasegjon between two magnetic fluids ends, at a higher tempera-
which is stable, at moderate to high densities. For weaklyure, at an order-order critical point. If confirmed, this critical
anisotropic potentials, the order-disorder transition is alwaygoint is analogous to the solid-solid critical points investi-
continuous and terminates at a critical endpointtbe liqguid  gated by Kincaidet al. [7] in studies of Ce and Cs, and by
side of the liquid-vapor coexistence curve. Increasing theFrenkel and co-workers in studies of model colldii§ The
anisotropy above a certain threshold drives the transitiosimulation results for the Heisenberg fluid, however, appear

angles, i.e.;s-s' =cosy=cos cosd’ +sind sind’ cosip—¢').
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to be at variance with the results of MF thed®], which  ized Heisenberg models and found it, within mean-field
does not predict this type of phase diagram for aogitive  theory, for a class of models characterizedsoft repulsive
value of the anisotropy ratidg. isotropic interactions, in addition to the hard-core and ferro-
More recently{3], we have investigated the phase behav-magnetic Heisenberg potentidf3]. These calculations were
ior of the ferromagnetic Heisenberg fluid using both MF andnot confirmed by MMF theory and further investigation of
a more refined version of density-functional theory, viz., thethis issue is the second goal of this paper. Although MMF
modified mean-field approximatioMMF). In the latter, theory is still approximate, it is expected to be more accurate
configurations in the average of the perturbative part of théhan MF theory and thus the study of the global phase be-
energy are weighted by the zero-density approximation ohavior of generalized Heisenberg fluid, based on MMF
the pair distribution function. This is known to yield an im- theory, may shed some light on the nature of the phase dia-
proved description of the liquid-vapor phase diagram of di-gram of the simulated Heisenberg fluid. Indeed, if the order-
polar fluids[9]. Indeed, an overall improved description of order critical point is found to occur within MMF theory for
the simulation results, for the system wh=, is obtained values of the interactions closer R=« (when compared
within MMF theory [3]. Nevertheless, the theory still pre- with the results of MF theopy then it is possible that the
dicts that the phase diagram of this fluid exhibits a tricriticalorder-order critical point occurs in the Heisenberg fluid.
point[3], in (apparent contradiction with the simulation re- In this paper, we extend the calculations for the phase
sults. diagrams of generalized Heisenberg fluids to MMF theory
Clearly, small shifts in the simulated Curie line or the and study the local stability of the tricritical point, for a wide
liquid-vapor boundary yield a phase diagram exhibiting arange of parameters. These results are compared with those
tricritical point rather than a critical endpoint. In view of the of MF theory. Unlike MF theory, where the topology of the
rough location of the Curie line, such shifts cannot be ruledpohase diagram depends only Bn MMF theory is sensitive
out. In addition, it is not known how the liquid-vapor coex- to the range of the interactions. We also investigate the ef-
istence curve may be affected, closgtaulti)critical points,  fects of this range on the phase diagram of the model.
by the rather small system sizB16 particles This paper is organized as follows. In Sec. Il we present
In a subsequent papg2], a more accurate location of the the simulation results. In Sec. lll we sketch a derivation of
Curie line was obtained, by resorting to finite size scalingthe MMF approximation and compare the new phase dia-
theory[10,11]. Simulations were carried out in the canonical grams with those found within MF theory. We carry out a
ensemble at three densitigg,=0.7, 0.6, and 0.4, for system Landau expansion for the MMF free energy, in order to ob-
sizes ranging from 108 to 1372 particle€2916 particles for tain analytical conditions for the local stability of the tricriti-
p*=0.6), at temperatures close to the transition temperatureal point. Some details of these calculations are presented in
of the infinite system. The latter was determined from thethe Appendix. Finally, in Sec. IV we make some concluding

intersection of the fourth order cumulants, remarks.
1 <m4> 3 Il. SIMULATIONS
U4— 3<m2>2 ’ ( ) .

The liquid-vapor coexistence curve was determined using
plotted as a function of temperature, for the different systenthe GEMC technique. The method is now fairly standard and
sizes[10]. To obtain an accurate value for the intersection ofextensive descriptions are available in the literaféie Two
the fourth order cumulants, advantage was taken of the hisystem sizes were considered, with=512 and 1728 par-
togram reweighting techniqué&?2]. In addition, critical slow- ticles, respectively. In each case, tNeparticles are distrib-
ing down near the magnetic order-disorder transition wasited over two boxes with volumas, andV,, which fluctu-
avoided by adapting the Wolff cluster algorithm, originally ate under the constraint of total fixed volume,+V,. At
devised for lattice systemisl3], to the continuum system equilibrium, the pressure and chemical potential are the same
under study. The model studied in these simulations differsn the two boxes. Table | collects the characteristics and the
from that of Ref.[1] by the truncation of the potential thermodynamic datéexpressed in reduced unitsf the va-
J(r), atr,=2.50; this is less than half the simulation box for por and liquid phases for the various runs, in the temperature
all the system sizes, as required in order to apply finite sizeange T* =kT/J=1.0—1.29. The simulations were per-
scaling arguments. Truncation d{r) affects quantitavely formed in cycles: one cycle consists of a trial displacement
the phase diagram of the Heisenberg fluid. Indeed, MMFand rotation of the magnetic moment of every particle, one
theory predicts that the tricritical temperature is loweredattempt to change the volume ahg, attempts to exchange
from Ty=2.09 to T;;=1.39, when the cutoff varies from particles between the simulation boxes. As one of the boxes
infinity to 2.50° [3]. The simulation of the liquid-vapor coex- contains a ferromagnetic liquid, the efficiency of the inser-
istence curve of the Heisenberg fluid, with a cutoff of tion step was improved by the use of a bias: the spin orien-
2.50, is thus required. This is one of the goals of this papertation was chosen with a probability that favors orientations
As was done previously, the GEMC technique is employedparallel to the local field, at the attempté@ndon) position
An estimate of finite size effects is also obtained by usind1,14]. This bias is, of course, accounted for in the accep-
systems with 512 and 1728 particles. In addition, an extrdance probability of the particle transfer step. The acceptance
point on the Curie line is located. These simulation resultgatios for the translation-rotation moves and volume changes
are described in Sec. Il. were adjusted to lie in the range 30—50 %, while the value of

In earlier theoretical work, we have searched for the coNg, was chosen to yield a success rate of particle transfers of
existence of two orientationally ordered fluids for general-1-3 %, depending on the temperature. Tiesidual chemi-
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TABLE I. Details of the GEMC simulations.
Vapor phase Liquid phase
KT/J N Nyges  po° m U/NKT kT w' IKT po® m U/NKT  pkT w'IKT
1.290 1728 400000 0.3185) 0.442) —0.855) —0.3183) 0.461) 0.761) -—2.074) —0.3143)
1.275 1728 154000 0.288 0.412) -—0.774) —0.3464) 0.5035) 0.79715) —2.454) —0.3426)
1.275 512 200000 0.288 0.471) -—0.704) ~0.41 —0.3634) 0.5045) 0.8115) —2.455) —0.3634)
1.250 512 80000 0.274) 0.322) -—0.594) 0.391) —0.4405) 0.5338) 0.811) -—2.796) 0.402) —0.4418)
1.200 1728 230000 0.228 0.1403) —0.3684) —0.6745) 0.5682) 0.8441) —3.21(2) —0.6785)
1.200 512 130000 0.289) 0.221) -—0.391) 0.3295 -—0.661) 0.5834) 0.8502) —3.343) 0.342) —0.651)
1.111 512 180000 0.183) 0.121) -0.291) 0.2475) —1.06415 0.6653) 0.8861) —4.422) 0.212) —1.07115)
1.000 512 200000 0.11% 0.0482) —0.1695 0.1372) —1.801) 0.7441) 0.9141) —5.841) ~0.02 -1.791)

cal potential, u’/kT=u/kT—InA3, was calculated during
the insertion step using Widom’s method, as generalized b
Smit and Frenkel15,16.

The pressure was calculated from the virial expression

1
Prc  *

1 > =
T e\ v [T Vel ),

V |'J
i#]

=)+ @

wherep,c is the hard core contribution. The spin péttird
term on the right-hand side of) 4nay be written as

4mp?
(%) __ 1$der £33/ (1)hy(r), )

spin

whereJ’ (r) is the derivative ofl(r), h,(r) is the projection
of the pair distribution function on the spherical harmonic
s-s’, andp, is the density of phase. We note that, owing
to the discontinuity of the potential at=r., a §-function

Since, in order to save computer time, the pair distribution
function was not calculated in the course of the simulations,
we estimated the right-hand side of Ef) by assuming that
ha(r) takes its asymptotic valudy,(r)—3m? (r—«), at

the cutoff distancer =r.. The results of Table | show that,
using this correctioii6), the pressure of the liquid phase is in
good agreement with that of the vapor, except at the lowest
temperature, since in this case the correlation function has
not reached its asymptotic value ra&r.. The pressure of
the system with 1728 particles was not calculated.

At the lowest temperatures studied, the surface tension is
large and one of the boxes contains the vapor while the other
contains the liquid phase. The histograms for density and
magnetization exhibit two sharp peaks, corresponding to the
two coexisting phases. An example is shown in Figs. 1 and
2, atT*=1.20. In this case the densities and magnetizations,
as well as the other thermodynamic functions at coexistence,
were obtained as an average of the corresponding quantities
in each box. Error estimates were calculated through block
averages. For each properfglensity, magnetizationcare
was taken to choose the block size, larger than the decay

contribution arises that is Signiﬁcant in the ferromagnetic“time” of the Corresponding autocorrelation functidlsee,

phase only. It is given by

2
4mp, 4

(%)C:mch<rc>hA<rc>- ©
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FIG. 1. Density distribution of the 1728 particle system at
T*=1.20.

e.g.,[17)).

When approaching the critical region the boxes were ob-
served to switch identity nedr* =1.275, for the 512 particle
system and neaf* =1.29, for the largeX1728 system. In
this case the coexistence propertigiensities, magnetiza-
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FIG. 2. Magnetization distribution of the 1728 particle system at
T*=1.20.
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FIG. 5. Instantaneous density versus number of MC cycles of
FIG. 3. Density distribution of the 1728 particle system atthe 1728 particle system at* = 1.20.
T*=1.29.

. btained h . h . h ture T* =1.20, however, we found a difference in the liquid
tions) were obtained from the positions of the maxima of theqistence densities, of 0.15, which is outside the combined

corresponding histograms. However, density fluctuations arg., ars Inspection of the density of the box containing the

appreciable in the critical region, resulting in broad density};, id phase(cf. Fi indicates that in this svstem the
distributions. This renders a precise location of the peak po-q P (ct. Fig. 9 y

- i ; ; . average density may not have converged after 200 000
sitions difficult. An example is shown in Fig. 3, at cycles
T*=1.29(1728 particles For this state, the boxes switched '

. : ; : X Results for the liquid-vapor coexistence curve and the Cu-
identity three times, during 400 000 cycls. Fig. 4, where g |ing are shown in Fig. 6 and in more detail in Fig. 7. The

the density in one of the boxes is plotted as a function of thgje jine is obtained from canonical MC calculations of the

number of MC cycles — note the rapid passage from Ong,jer_gisorder transition temperatures at four densities,
phase to the otherThe average densities, calculated when —0.7, 0.6, 0.4, and 0.31. The corresponding critical tem-
the system is in a well defined phase in each box, are 0.29§ s e T o~

f f th infinit t T*=3.79
0.328, 0.302 for the vapor phase and 0.464, 0.466, 0.447 f J;e(;aolirgslééro 005e1 éggg%ofjsysar?g] 1?{220 005. re-
the liquid phase. From these values, the average coexistengge "' e P : L

§Bectively. These were determined from the intersection
densities were found to be 0.3D.01 and 0.46:0.01, com- B y

patible(wi.thin statistical errgr)sw_ith Fhoge obtain_ed from the \eg:ghssotfemgef(r);t[;tre?:‘g?rd?flfjggﬁnggt%; E%&%ﬂ E cl)c;tttiz
peak positions of the density distribution function.

Finite size effects can be estimated for the temperatures
T*=1.275 andl'* = 1.20, where two system sizes were con- 5
sidered. They are expected to be appreciable in the critical
region only. In fact, no significant differencésithin statis-
tical errop were found aff* =1.275, when the system size 4r
increases from 512 to 1728 particles. At the lower tempera- ;|

0.5 T T T

045

04 + . 1

0 0.1 02 03 04 05 0.6 0.7 0.8 0.9
035 .
p
03 b _ FIG. 6. Phase diagram of the ferromagnetic Heisenberg fluid.
The open squares represent MC calculations of the Curie line. The
filled squares(500 sping and open circleg1728 sping represent
. y y y ' . y Gibbs ensemble MC data of the liquid-vapor coexistence curve. The
0 0000 100000 150000 20(;%?33 250000 300000350000 400000 solid lines are the modified mean field results fri®h The dotted
lines are fits to the MC datg straight line for the Curie line, Eq.
FIG. 4. Instantaneous density versus number of MC cycles of7), with 8=1/2 and the law of rectilinear diameters for the liquid-
the 1728 particle system at* =1.29. vapor coexistence curyeThey serve merely as a guide to the eye.
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If the three-dimensional Heisenberg model studied in this
paper exhibits a tricritical point, the exponents take their
classical, mean-field, values, sinde= 3 is the upper critical
dimension for tricritical behaviof19]. These exponents de-
pend on the path along which the tricritical point is ap-
proached as well as on the nature of the corresponding order
parametef19]. The number density, is a nonordering den-
sity and in this work the tricritical point is approached along
the triple line, so that the corresponding critical exponent is
B=PBer=1[19].

It is readily seen, however, that E®), with B.4=1, does
not yield a good representation of the simulation data, in
particular, satisfying the requirement that the tricritical point
is on the Curie line. We cannot rule out, however, that Eq.

09

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

(9) applies only in a very narrow range of temperatures, near
o T.. As remarked earlier, this region cannot be approached,
reliably, by GEMC simulations. Another problem arises
FIG. 7. Same as Fig. Gletail. from the fact that the temperatures on the Curie line were

] N ] calculated for an infinite system, while those of the first-
three highest densities, the system size ranged from 108 {§der phase boundary correspond to finite system sizes. Al-
2916, while for the lowest density, three system siZ38, though the difference betwedn(L) andT(x) is expected
256, and 500 particlgsvere considered. The points for the tg pe small, it may be relevant in this context.
three hlgheSt densities are from Rm, Where detai!s Of the The Simu'ations appear to be Compatib|e W|th an a|terna_
calculations may be found. The point fpf =0.31 is new. tjve scenario, as suggested [y, i.e., the system exhibits an
Over the temperature range considered in the simulationgrder-orderimagneti¢ critical point. In fact, a reasonable fit
the Curie line appears to be |Ine(all|th|n the Uncertainty of of Eq (9) to the MC data, over the temperature range 1.1—-
the results . 1.29, is obtained, withBs¢~ 1/2. This is the mean field value

We now address the question of whether the preserff the coexistence curve exponent, for an ordinary critical
simulation results allow us to discriminate between the situngint. In this case, the Curie line terminates on the coexist-
ations described in the Introduction, namely, the Curie linegnce curve, at a temperature closelto=1.27, and there is
ending at(i) a critical endpoint on the vapor side of the 5 small temperature region betweBh=1.27 and the order-
condensation phase boundary, as suggested by the eadyder critical point, where the coexisting phases are a mag-
simulations, or(ii) a tricritical point, as suggested by the netized vapor and a magnetized liquid. With this picture in
theory. In the vicinity of the criticalor tricritical) tempera-  mind we have analyzed the variation of the magnetization
ture, the density difference between the liquid and vapogjong the coexistence curve. Along the liquid branch of the
phasegorder parameter(of a macroscopic systemanishes  cqexistence curve, the magnetization is well defined, varying

with temperature, as from 0.91 at the lowest temperature to 0.76M4t=1.29 (cf.
B T_T.8 7 Table ). On the vapor side, the magnetization is very small
PPl d”, @ at temperaturesT*<1.25, then increases to 0.32 at

. " I c .o T*=1.25, 041 afT*=1.275, and 0.44 at*=1.29 (1728
whereT. is the critical(tricritical) temperature of the infinite . : o !
particles. Fluctuations of the magnetization are important, as

system angs the bulk_cntlcal exponent. qufﬂmdﬁ) is valid evidenced from the broad shape of the magnetization histo-
only in the close neighborhood of the critical temperature.

For a finite system, Mon and Bind¢t8] have shown that gram (cf. Fig. 8. ForT*_>1..25, the _cqexisﬁng vapor densi-
Eq. (7) has to be re,placed by ties are close to the Curie line and finite size effects may play

an important role. A more detailed study of the finite size
o | T=To(L)|A, 8 effects is required before a definite conclusion is reached, as
prpo| (L)l ® to the value of the infinite system magnetization, in this re-
if the correlation lengtté is less than the system sigeand 910N In pa_rtlcula_r, the e>§pected non_classmal exponent for
that the behavior of the system crosses over to the three-dimensional Heisenberg fluid should be observed,
before the crossover to the classical regime is obtained.
pr =Py |T=Te(L)|Pef, 9
when the correlation length exceeds the linear dimension Hll. THEORY
L of the simulation boxT.(L) is a size dependent critical A. Modified mean-field phase diagrams
temperature and the effective critical exponghy, is given
by its classicalmean-field value, B, . For sufficiently large 1y "within density functional theory this system is charac-
systems, where the regimg<L is established, the system terized by the densit ientational flen(F
will cross over from the behavior given by E¢f) to that ~ '©"4€C DY the gn3| y onen.a 'ona .pro ! q’(r’“’_).
described by Eq(9), as the temperature approaciiegL ). ?p(r)Af(E,w), p(r) being the density of particles at position
In three-dimensional systems, however, this crossover may andf(r,) the fraction of those particles with orientation
be difficult to observe. w=(60,¢). If the intermolecular potentiap is pairwise ad-

Let us consider the generalized Heisenberg fluid of Eq.
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o1 . We considere; greater than or equal to ze(ferromagnetic
interactions only, R takes the sign ot,, which is positive
for isotropic attractive interactions, and negative otherwise.
The reference part of Eq10) is treated as i3], i.e., by
using a local density approximation for the reference free
energy functional and a random mixing approximation for
the orientational entropy of a uniform, orientationally or-
dered fluid. The Carnahan-Starling free energy is used for the
uniform hard sphere free energy density. The pair correlation
function is approximated by a zero density approximation
[21],

0.09

0.08 -

0.07 1

0.06

0.05

p(m)

0.04 |

0.03 |

0.02 |

0.01 |

9(F12,01,00; @) =eXP(— Ba(l12,01,07)).  (15)

0 ) L L L L L ' L

0 01 02 03 04 05 06 07 08 09 1 Substitution of Eq(15) into Eq. (10) yields the MMF free
m energy density of a uniform fluid:

FIG. 8. Magnetization distribution of the 1728 particle system at 1 1 = 2
2 2 2
T*=1.29. Bt pAm}T)=Bthe— 5p ot 5p 21 W7i+pIni =/,

16
ditive and separable into a reference paft.f) and a pertur- (18

bation (¢,), then[20] the free energy functional may be where the coefficients, are found by integrating the pertur-

written as bative part of Eq(10),
N B N 111 > - 214+1 (re
Flo(r,0)]=Fredp(r,0) ]+ 2o de | drydrydw;dw, u|=4777 r2dr

Xg(ry,wq,rp,0z;a)p(ry,w;)

X p(M1,w1,72,0)p(T2,03), (10)

X

2
exp(—= BH(r NI+ 1A(t) \/ T_25|,0] (17)

Here |, is a modified Bessel function of ordek,
t=[BJ(r)| and the se{ 7} denotes the coefficients of the

expansion off (w), in Legendre polynomials:

whereg(ry,w;,r,,w,;) is the pair correlation function of
a system with interaction potential

Pall1,12,01,02) = Prert gy 11 . * o141
f(0)=2 —— mPi(cos). (18)
Equation(10) is exact but, in general, approximations are =0 &
required in order to apply it to interacting systems.

We consider generalized Heisenberg fluids characterizeft
by the potential of Eq(1), and take forJ(r) the Yukawa

form used in earlier work and fot(r) the tail of the C:J' ex WP.O0 | dx 19
Lennard-Jones potential, . PIZJI MUPR(X) [dX. (19

is a normalization constant given by

exd —A(rlo—1)] Minimization of Eq.(16), with respect to the order param-
J(r)=—e o ' (12 etersy,, yields their equilibrium values, which are the solu-
tion of the set of integral equations:
(=&~ 6 13 !
(N=-aly 13 fﬁlH(x)exp(pz“k:onkukpk(x))
, , , 7= C (20
The ratioR defined by Eq(2) is now
o We note thaty, is just the earlier defined magnetization
f r2drd(r) Using Eq. (16), we find for the pressurep) and the
R= — chemical potential &)
e
f radrl(r) 1.2
’ BP=BPhe= 5072 MU, (21)
_3&[(L+N)—(1+Nre/ojexd —N(re/o—1)] -

€

1= (ro/o) ° ' 2
E). (22

(14) Bu=Bpnc—pUptin
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FIG. 9. Phase diagram of the Heisenberg fluid Witk 0.3, in
the MMF approximatior(type ). Tg°, temperature of the isotropic
critical point; FL, ferromagnetic liquid; IL, isotropic liquid; IV,
isotropic vapor; full lines, first order phase transitions; dashed line,

Curie line;c; , isotropic critical point; CEP, critical end point. netic liquid coexist(Fig. 10, type Il diagram As R in-
creases, the triple point temperature also increases, until it
At two-phase coexistence, the equilibrium densities are th@ecomes equal to the isotropic liquid-vapor critical point. At

FIG. 10. Phase diagram of the Heisenberg fluid vith 0.5 in
the MMF approximation(type II). tc, tricritical point.

solutions of higher anisotropies, the isotropic critical point occurs at a
temperature below, and thus it is no longer globally stable
P(p . T)=p(p,. T), (Fig. 11, type Il diagram This type of diagram persists up
to R=, i.e., for systems with no isotropic attractive inter-
Ib(’(pl ’T):M(pl) ,T), (23) actions.

The tricritical point becomes locally unstable, at a nega-
tive value ofR. At this point the system crosses over from
. : tricritical behavior to a regime where an order-order critical
atl=6 (see[3]. fqr a d|§cu$5|oh . point occurgFig. 12, type IV diagram In these systems, the

A systematic investigation of the MMF phase diagrams,cie line ends at a critical endpoint on the low density
as a function ofR, was carried out. The existence of Mmag- yranch of the first-order phase diagram and, at temperatures
netic critical points, within the MMF approximation, has re- ponyeen the critical endpoint and the magnetic critical point,
ceived particular attention, since it is significant in the CON-hhase coexistence occurs between two magnetic fluids.
text of the simulations described earlier. In Figs. 9-11 we Comparison of these results with those of H&l. shows
plot the results for the MMF phase diagrams of three sysi, ot forR=0.3 andR=0.5 we obtain the same type of phase

tems, with “infinite” . (in practice we took .= 100) illus-  jagrams within MF and MMF approximations. By contrast,
trating the different types of diagrams found, for positive sy R=0.7 we obtain a phase diagram of type Il within MF
R. A description of the phase transitions and critical points in

each of these diagrams was discussed, in detail, in Sec. Il of

and the phase diagrams are calculated by solving &35.
and(20). For practical reasons, the sums olare truncated

[3], so we just summarize it here. Three types of transitions 15
were identified: a continuous order-disorder transition be-
tween ferromagnetic and isotropic dense flui@sirie line), 14 R=1. { Curioline
and two first-order condensation transitions. The temperature
at which the Curie line meets the condensation phase bound- L3 {te
ary depends sensitively dr. ’
For weakly anisotropic fluids, the Curie line ends at a
critical endpoint, CEP, on the condensation phase boundary. L2 - L
The corresponding temperatuiig;gp, Separates a regime of T/T,
isotropic liquid-vapor condensation from a regime of 11
condensation-ordering transitiorisig. 9, type | diagram
For stronger magnetic anisotropies, the critical end point be- 10
comes locally unstable and a tricritical point occurs at a tem-
peratureT,., where the Curie line terminates. The tricritical
temperature increases with the anisotréqyyand this point 090 0.2 04 06 08 1.0
separates two regimes of magnetic transitions. Abyéhe p*

magnetic transition is continuoy€urie ling, while below,

it is first order. This diagram also exhibits a triple point tem-  FIG. 11. Phase diagram of the Heisenberg fluid V&th 1 in the
peratureT,, where a vapor, an isotropic liquid, and a mag- MMF approximation(type IlI).
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i1 detM =0. At continuous phase transitions, Blevanishes on

{ Curie line

R=-3 the phase boundary, i.e., at the critical point. There are two
such solutions witH = 0}(l #0), corresponding to the iso-
tropic critical point and to the Curie line. The latter is given
by (see[3] and the Appendix

pu= 31 (25)
and the corresponding eigenvector is

v=(0,10...). (26)

Similarly, the condition for the tricritical point is obtained by
expanding the free energy about one point on the Curie line,

o0 0.2 v 06 0.8 10 in the direction ofv. We first consider variationésee also
p* [23]) in p and 7;, about a point on the Curie line, of the type
FIG. 12. Phas_e diggram of the Heisenberg fluid W_{t_iq—S il.’l (P71, 72: M3, - - - )=(pcurie0,0, .. .)+(0,1,0,...)4
the MMF approximation(type V). cog, order-order critical point
(OOCP. T, temperature of the OOCP. +(Xg,X1,Xz, . ..) 8%, (27
theory while it is of type Il using MMFsee the following where §;,X,, ... ) defines a line in density space which is,

subsection This is an indication that MF theory overesti- as yet, arbitrary. The corresponding variationf iis

mates the stability of the ordered phagesth respect to

MMF theory) which results from neglecting correlations. Bf(p.{m}) = Bfcuie™ D(Xo. X1, Xz, . . .)8*+0(8°),
(28)

B. Stability of the tricritical point L
Y P whereD is given by

A systematic comparison between MF and MMF approxi-

mations was carried out by calculating the valuesRyf 1(0*Bfuc , 3
where the type of phase diagram changes. These were calcu- D(Xg,X1, .. .)= 5( 902 Uo)xo— §Xo
lated previously, within MF theory, by Hemmer and Imbro P
[5] who found,R,;;=0.38 andR,;, =0.63, and more re- 1 .2 pUy
cently by[3], who foundR,.,, = —25.2. +§p22 (1— KT 1) U XE
In order to calculatdR|;, we require an equation for the k=2
tricritical point, since the transition from type | to type Il is 3 9
obtained, wheril,. equalsT.gp (see the preceding subsec- - §p2X2uz+ 20”" (29

tion). Likewise, the transition from type Il to type Ill occurs

when the triple point temperature equals the isotropic critical, . . ... o . . _—y
point and it is found by solving™=(R) =Ty(R). Finally, a A tricritical point is obtained whei® vanisheg3]. By mini

phase diagram changes from type Il to type IV when themIZIng D with respect to the; we find for x;

tricritical point becomes locally unstable, i.e., when a “tet-

racritical” point appear$3]. Xgh=—— | (30)
Analytical expressions for the multicritical points referred 2( e —u )

to above were calculated using the MF free endglyby 0

various methods. Here, we apply one of these to the MMF

free energy. Briefly, the method consistdiincalculating the . 3

MMF stability matrix, M, using Eq.(16); (i) solving the Xp =, (3D

o175

stability equation, dé =0, in order to determine the critical
points and the corresponding eigenvectdis) expanding
the free-energy in powers of a scalar parameéteabout the ) min ) min )

critical point, along a direction parallel to a correspondingith X" =0 for i>2 andx;™" arbitrary. A zero ofD yin
eigenvector. Details of these calculations are given in théignals the onset of a local instability of the Curie critical
next few lines and in the Appendix. point and yields the condition for tricriticality, i.e.,

The elements of the stability matrik], are 5
d°Bfuc  5/3u,—5u; Ug
3%~ 2\9u,-50,) T30, (32
(24) 1Y 2 1

Uz
is the equation for the tricritical points. This equation is the
where po=p and {p;}={#;} for i#0. Local stability re- same as Eq(7.24 of [24], which was obtained for dipolar
quires that the stability matrix is positive definite, i.e., thatfluids using MMF theory, and it is thus the general condition
deM>0 [22]. This condition is first violated when for tricriticality within the MMF approximation.

9*pf
dpidp;’

ij
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The condition for the local stability of the tricritical point
may be obtained by writing a similar expansion forabout
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TABLE Il. Dependence oR on the cutoff,r. (in units of o).
For cutoffs,r.<2.65, the system of equatiofi®5), (32), and(35)

a point on the tricritical line. This is done by considering has no solution, and thus the OOCP does not occur.

variations of the type

(pym1,m2, - - ) =(p1x0,0, .. )+(0,1,0, .. )4

+ (X xq x5, L) 82, (33

which yields the expansion fdfr,
Bf(p{m})=F et EOEM XM, .. )85+ 0(587). (34)

The vanishing of the fifth order term i requires that
x;=0 and thusE depends only oxg"" andx5". The tri-
critical point becomes locally unstable whé&=0. In [3]
this was referred to as a “tetracritical” point and it is the

solution of

1 8°Bfuc
6 dp°

) 1 . . 3
(XB“'”)3+§(X5”'”)2X8""pu2( 2— gpuz)
(5" 2pSuZu3
7x15

miny 2
oty 20

~ 7x15

N 9 )
_ 1—5X6man2nmp3U§U2+ ng"lln+ 51 15Xr2n|np6uéllu2
’ =0 35
35, =0 (39

R;...v is now obtained by solving simultaneously E¢25),

R|||-|V =-2.99 Whean:265

le I:QI-II RII-III RIII-IV
10 0.43 0.71 -7.82
6 0.43 0.71 -7.63
4 0.42 0.69 -6.72
25 0.38 0.64

We have obtaine®,, for different values of . (ranging
from 2.5 to 10, forn=1) and found thatR_ decreases
slightly asr. decreasegsee Table ). Likewise we have
calculatedR,,, for the same range af., with A=1, and
found thatR,_, decreases weakly with. (see Table I\
Finally, the value ofR.,, was calculated as a function of
re, for A=1. We found thatR,,., is always negative and
that its absolute value decreases strongly wjthFor values
of r.<2.650, a tetracritical point has not been found. This
suggests that there is a threshold for the range of the inter-
actions below which the type of condensation associated
with the order-order critical point does not occur.

In addition, we have searched for a pair of values
(rc,\) corresponding to a tetracritical point wikt= . This
is relevant in the context of the simulations discussed previ-
ously. As noted before, for=1 we did not find a tetracriti-
cal point for any value ofr, when R=o. For values of
A=0.01, 0.1, 0.5, 2, 3, and, in the range Zr <10, we
have also failed to find a tetracritical point for the Heisenberg
fluid. This suggests that the tetracritical point and thus the

(32), and(35). These results were used to calculate the val{ossibility of an order-order critical point is associated with
ues of the anisotropy ratio where the phase diagrams changide change in sign of, , i.e., with the inclusion of additional

within MMF theory.
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log m
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22 215 21 205 20
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-2.25 -2.0 -1.75 -1.25 -1.0 -0.75

FIG. 13. MMF tricritical scaling region for the simulated
Heisenberg fluid R=c andr =2.50). Log;gm on the coexistence

repulsions, at least within the MF and MMF approximations.

-1.0
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-1.5

log p
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-2.25

-2.25 -1.75 -1.5 -1.25 -1.0

logt
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FIG. 14. MMF tricritical scaling region for the simulated
Heisenberg fluid R=« andr.=2.50). Dashed line, log(p/ps

line vs logy1—T/T). The scales were chosen so that, as the—1); dotted line, logy(1— p,/pi). The dashed line was shifted by
tricritical temperature is approached, the curve approaches a constant for clarity. The scales were chosen so that on approach-
straight line parallel to the main diagonal, corresponding toing the tricritical temperature the two curves approach a straight
B=0.5. This behavior is illustrated in the inset. The slope calcu-line parallel to the main diagonal, singg=8,=1. This is shown
lated from the two points closest to the tricritical temperature yieldsin the inset. The slopes calculated from the two points closest to the
B=0.456. tricritical temperature ar@,=0.994 andg,=1.019.
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IV. CONCLUSIONS Theorique et Hautes Energies is Laboratoire assaagi€en-

re National de la Recherche Scientifigue-URA 63. We thank
resTJrI]ti rtﬁzl:]lt‘;‘h%fsgl\gf JE t?]é%erCte&;/?Fb?sccl)%stZirntg dtr}foﬁ(a;%e Institut du Deeloppement et des Ressources en Informa-
. o eory. . ! tique ScientifiquéIDRIS) for allocation of computer time on
zero-density” limit of the pair correlation function and thus the CRAY C-98. M.T.G. acknowledges partial financial sup-
It must be reasonably accurate at low densities. At hlghe{)ort through thé F.’oﬁu.guese government project, PRAXIS
densities, we base our assumption on the fact that, fofy > 1/r|5/181/94. M.J.P.N. acknowledges the financial
R=0c, the MMF results are indeed closer to the S|mulat|onsupport of the EC through Grant No. ERBCHBGCT940721
results(see(3)). while J.M.T. acknowledges the financial support of the Por-

We have fgund that_, at Iea§t for pOSIt.IFQ—;‘ MF overesti- tuguese government under Grant No. PRAXIS XXI/BD/
mates the anisotropic interactiofmorrelationg, when com- 2818/94

pared with MMF. This is what we may have anticipated

since MF theory is known to overestimate the stability of the

ordered phases. In fact, a comparison of the valueR,gf APPENDIX
and Ry, shows that more anisotropic interactions are re-
quired within MMF (largerR) to cross over from the weak dir
to the strong magnetic regimes, in line with the above dis-elements of the stability matrié, with H=0 and =0
cussion. This is corroborated by the fact that for the sam(?I +0), and found ’ !
value ofR, the ordered phase is more stable within the MF '
approximation.

In order to determine the Curie line EQR5) and the
ection v over which Bf is expanded, we calculated the

The question still remains of whether an order-order criti- ‘92_'3]‘: % —u (A1)
cal point occurs for a system wifR=c, within an “exact” dp* dp* o
calculation. If this is the case, we would expect the MMF
Ry.iv to be closer to infinity than the corresponding MF 5*pf

result. Or, in other words, we would expect that less isotropic 0, (A2)

ipan.
repulsions are required in MMF than in MF theory. How- PeK
ever, this is not what happens. In fa®)w = —7.8 (for 2
re=10) while R}, =—25.2. Inspection of Table Il also = p2u( 8, — pui(PP))), (A3)

shows that this trend is even more pronounced for lower I I
values ofr, i.e., |Ry.v| within MMF is smaller for any

other value of.. We cannot rule out that the MMF results Where  (A(x))=(1/C) J1;A(X) eXp(Z =1 p MUkPi(X)),

are less accurate than those of MF theory, but at present wiith C given by Eq. (19). deM=0 has several types

do not see why this should occur. of solutions. A zero of Eq(Al) corresponds to the iso-

By contrast, the simulations reported in Sec. Il do nottropic critical point. Note that of the term&gf/ay; that
provide conclusive evidence for either the tricritical or thewhich vanishes at the lowest density corresponds to
order-order critical point scenario. We have calculated the&k=1 [u;(T)>u,((T) for I=1], and thus the Curie line is
size of the ftricritical scaling region of the Heisenberg fluid given by pu;=3. This line separates the(T) plane into
within the MMF approximation and the results are summa-wo regions corresponding to ordered and disordered phases.
rized in Figs. 13 and 14. We note that has a wider scaling The eigenvector associated with this zero eigenvalud g
region than eithep, or m. These results suggest that the given by Eq.(26).
simulation points may be outside the scaling region, except, The expansion of3f along a line given by Eq927) or
perhaps for points on the vapor branch. However, in order t¢33) can be written as
settle this issue we need an accurate estimaig(df). In the
absence of this information we can only suggest that this is a ©ogm
problem. Bf(pctX06%, 8+Xx,8%%,8%, ...)= 2 —O"pf],

More accurate theoretical results are unlikely to be ob- m=o0 M-
tained with current techniques, and thus the type of criticality (A4)

of the Heisenberg fluid must be settled by further simula-Where is the density of the Curie critical point, E(@8)
tions. A possibility is the use of an approach similar to that pc 15 HIE T . X e
P y PP or of the tricricritical point, Eq(34), respectively®™ is the

adopted by Wilding and Nielab25] to investigate the tric- X )
ritical point of a two-dimensional Ising spin fluid. These au- Mth power of the differential operatd,

thors locate the tricritical point using the cumulant intersec- .
tion method. The fourth order cumulants of the — 53
magnetization corresponding to various system sizes, inter- ®_5i=0
sect at a point which is the tricritical temperature. The pos-

sibility to apply a similar approach to the present three-
dimensional Heisenberg fluid is under investigation.

J
X+ ——

o (AS)

+—.
an

This expansion involves derivatives gf with respect to
p and each of thep . The derivatives are evaluated at
7=0 (1#0). It is easily seen, after carrying out some of
ACKNOWLEDGMENTS them, that they involve terms of the type
One of us(J.J.W) acknowledges helpful discussions with

D. Levesque and G. Stell. The Laboratoire de Physique (Pi(X)P(X) - - - Pp(X)). (A6)
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Using the recursion relation for the Legendre polynomials it
is possible to convert the terms in E&\6) in a sum of terms

(P1(X)Pi(x)), given by
i+1 i
(P10OOPi(x)= 57 (Pi100) + 57 (Pica(X)).
(A7)
It is easily seen that in the absence of a magnetic field,
(Pw(x)) = 7

and so the terms in the expansi@i) are greatly reduced.
The coefficient 0f5® in Eq. (A4) vanishes identically over

(k#0), (A8)

the Curie line. The nonzero derivatives that appear in the

5* term are given by EqgA1), (A3), and

Bt 2
7 ___ /4 2
ompir, 157 1 "
*pf
———2=pU(2—puy), (A10)
dpdny
Bt 2
_ 5,,4
e Al (A11)

The nonzero derivatives of the fifth order term are Eq.
(A9) and

°pBf 3,
= 3gP Uil2Us,

_— (A12)
d119m29 13

S, AND TELO da GAMA

(?BBf 3p2Uk

dpait 2PN 2T (A13
P>t 2
- 5,3
——=3—=— 5zp Uils. Al4
<977§0"773 35P Y1ts ( )

Finally, the nonzero derivatives in the coefficient &f

are Egs(A9), (A10), and

P*Bf  PBfuc

5 (A15)
o*Bf 11
__ = 5,272
omoms 1057 U1t (AL6)
J*Bf 8
— 3,,2
— = , A17
ﬂpaﬂianz 15P u1u2 ( )
J*Bf
9p2d 7 =2U;(1—-puy), (A18)
Ppf 2
4 4
=_ , A19
3Bt 12
T 6,4
Py po 175P U1Uz, (A20)
Bt 16
- __ " 7,6
po, &3 U1 (A21)
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